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INTRODUCTION
In 1892, Felix Klein made a important contribution to the study of geometry in his Erlanger 
programm. Klein unified and classified various geometrical studies of the nineteenth centrury 
by viewing geometry in general as the study of those properties of figures that remained 
invariant under the action of a particular group of tranformations on the underlying space (or 
manifold). So according to Klein the criterion that distinguishes one geometry from another is 
the group of transformations under which the propositions (of that geometry) remain true. 

Klein provided several examples of geometries and their associated groups. Ordinary 
Euclidean geometry in two dimensions correspons to what Klein called “principal group”. 
We might at first expect this to be the continuous group of all isometries (or congruent 
transformations). But since the propositions remain valid when the scale of measurement 
is altered, as in photographic enlargement, the “principal group” for Euclidean geometry 
(according to Klein) also includes “similarities” (which may change distances but preserve 
angles) in contrast to isometries which preserves length.

SIMILARITY IN THE EUCLIDEAN PLANE
A similarity is a transformation which takes each segment AB into segment A'B' whose lenght 
is given by A'B' = k * AB, where k is a constant positive number (the same for all segments) 
called the ratio of magnification. When k is equal to one the similarity is an isometry and 
when k is not equal to one the similarity is a dilation. 

DILATION IN THE EUCLIDEAN PLANE
Let O be a point and k a number. The dilation with center O and ratio k is the transformation 
of the Euclidean plane that fixes O and maps a point P (not equal to O) onto the unique point 
P* on OP such that OP* = k(OP). In other words, points are moved radially from O a distance 
k times their original distance. 

The convention is that if k > 0 then P and P* are one the same side of the center O (fig 1a), 
and if k < 0 then P and P* are on the opposite sides of the center O (fig. 1b). Dilations will 
here be denoted D(O,k) with the center O and the ratio k.

REMARKS:
(i)   A dilation is a transformation which preserves (or reverses) direction. It transforms each
       line into a parallel line. 
(ii)  A dilation is completely determined by its effect on any two given points.
(iii) k is a constant, independent of the position of O.
(iv) AB → AB is the identity.

We can also view dilations with the help of Cartesian coordinates. This transformation is 
represented by (x,y) → (kx,ky).
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EXERCISE 31, CHAPTER 9 -
GROUP STRUCTURE OF DILATIONS AND TRANSLATIONS UNDER 

COMPOSITION

These results hold in Euclidean geometry. The algebraic properties of different operations 
in geometry are of great interest. It is a natural question to pose whether dilations form a 
group under composition. 

A group <G,*> is a set G closed under the binary operation * such that:  
G1. ∀a,b,c ∈G, (a*b)*c = a*(b*c)   associativity
G2. ∃e ∈G, ∀a ∈G, a*e = e*a = a   identity
G3. ∀a ∈G, ∃a' ∈G, a*a' = a'*a = e   inverse

Obviously the existence of identity D(0,1) and inverse D(O,k) ∉D(O,1/k) follows 
immediately. Dilations take points in the Euclidean plane and map them into the Euclidean 
plane. Thus associativity follows directly from the theorem of associativity of composition 
(c.f. any algebra textbook). G1, G2 and G3 hold. In order to constitute a group, the set of 
dilations has to be closed under composition. 

EXAMPLE
Consider two distinct points P and Q. Draw 
the line between these two points. Find the 
midpoint 0

1
. Let D(O

1
,k

1
): P→P

1
, 

D(0
1
,k

1
): Q→Q

1
. Construct the 

perpendicular to PQ at O
1
. Let O

2
 be a 

point on the perpendicular not being O
1
. 

Let D(0
2
,k

2
): P

1
→P

12
 with k

2
 such that 

PP
12 

|| O
1
O

2
. Define Q

12
 by D(0

2
,k

2
): 

Q
1
→Q

12
. ∆PP

1
P

12 
≅ ∆QQ

1
Q

12
 implies 

QQ
12 

|| PP
12

.  

Assume that D(0
2
,k

2
) o D(0

1
,k

1
) = D(0

3
,k

3
), 

but QQ
12 

|| PP
12

 implies that there cannot 
be any such O

3
. Thus the composition of 

two dilations does not necessarily has to be 
another dilation. 

P12

O1
O1

Q12

Q1

Q

P

P1

Considering this example, it is found to be a translation (take any point and dilate it twice as 
above, similarities of triangles give the result). It also shows that the composition D(0
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dilations and translations form a group under composition? Translations themselves form a 
commutative group under composition (proposition 9.12, Greenberg). The set of translations 
and dilations fulfills the requirements G1, G2 and G3. It remains to be proved that the set 
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CONCLUSION
In all possible cases, the composition of translations and dilations is either a translation 
or a dilation. The set of these mappings is closed under composition, contains identity, 
inverses and the associative rule holds. Thus dilations and translations form a group under 
composition. 
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EXERCISE 29, CHAPTER 9 - 
EXISTENCE OF TWO DIFFERENT DILATIONS TAKING 

A CIRCLE ONTO ANOTHER
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EXERCISE 30, CHAPTER 9 - 
A SPECIAL DILATION TAKING ∆ABC ONTO ∆A'B'C'

Consider two of the three medians, BB' and CC' and let them meet in the point G. 

Let L and M be the midpoints of GB and GC. By Euclid VI.2 and Euclid VI.4 (see remarks), 
C'B' and LM are parallel to BC and C'B' and LM are half the length of BC. 

The angles C'B'G and MLG are equal by Euclid I.29. So the triangle LC'B' are congruent 
with the triangle LMB' (by Euclid I.4). Thus LC' and MB' have the same lenght. It follows by 
Euclid I.27 that LC' and MB' are parallel.

So B'C'LM is a parallelogram (see figure 2a). Since the diagonals of a parallelogram bisect 
each other, we have B'G = GL = LB, C'G = GM = MC. Thus the two medians BB', CC' trisect 
each other at G. The point G is also a point of trisection of another, and similarly a third. 

C'B' is half the length of BC, in the same way B'A' is half the length of BA and C'A' is half the 
length of CA. So the triangle A'B'C' is half the size of the triangle ABC. Thus the dilation (G, 
-1/2) takes the triangle A'B'C' onto the triangle ABC (see figure 2b). 

REMARKS
- Euclid VI.2: If a straight line is drawn parallel to one of the sides of a triangle, then it cuts 
the sides of the triangle proportionally; and, if the sides of the triangle are cut proportionally, 
then the line joining the points of section is parallel to the remaining side of the triangle 
[http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI2.html].

- Euclid VI.4: In equiangular triangles the sides about the equal angles are 
proportional where the corresponding sides are opposite the equal angles 
[http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI4.html].

The common point G of the three medians is called the centroid of the triangle. Archimedes 
(287 - 212 B.C) obtained the centroid as the center of gravity of a triangular plate of uniform 
density in his work “On the Equilibrium of Plane Figures”. 
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EXERCISE 71, CHAPTER 9
A SPECIAL DILATION TAKING THE NINE-POINT CIRCLE ONTO THE 

CIRCUMSCRIBED CIRCLE

     
The nine-point circle can be constructed from any triangle ∆ABC in the Euclidean plane. 
The medians AA', BB', CC' meet in the centroid G of ∆ABC. D, E and F are the feet of the 
altitudes which meet in the ortocenter H. A', B', C', D, E, F and the midpoints of HA, HB 
and HC all lie on the nine-point circle.

From previous results it is known that the dilation D
1
(G,-1⁄2) takes ∆ABC onto ∆A'B'C'. This 

is equivalent to state the existence of another dilation D
2
(G,-2) taking ∆A'B'C' onto ∆ABC. 

The nine-point circle is by construction the circumscribed circle of the triangle ∆A'B'C'. In 
the Euclidean plane the circumscribed is uniquely determined by the triangle. The dilation 
D

2
(G,-2) thus takes the nine-point circle onto the circumscribed circle. 
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